Indian Statistical Institute Semestral Examination Differential Topology: MMath II

Max Marks: 60

Time: 3 hours

(1) (a) Does there exist a smooth one-one map $f: S^2 \longrightarrow S^1$? Justify. [4](b) Identify \mathbb{C}^2 with \mathbb{R}^4 by identifying $(z_1, z_2) \in \mathbb{C}^2$ with $(x, y, u, v) \in \mathbb{R}^4$ where $z_1 = x + iy$ and $z_2 = u + iv$. Let

$$X = \{(z_1, z_2) : z_1^3 + z_2^2 = 0\}.$$

Show that $X - \{(0,0)\}$ is a manifold. Find its dimension. [6]

- (c) For which values of a does the hyperboloid defined by $x^2 + y^2 z^2 = 1$ intersect the sphere $x^2 + y^2 + z^2 = a$ transversally. [6][4]
- (d) Let X be a manifold. Prove that there exists a proper map $f: X \longrightarrow \mathbb{R}$.

(2) (a) Let $f : \mathbb{R}^2 - 0 \longrightarrow \mathbb{R}^2$ be the map defined by

$$f(x,y) = \left(\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}}\right).$$

Let Z denote the unit circle. Show that f is not transverse to Z. Construct a map q such that g is homotopic to f and transverse to Z. [6]

- (b) Discuss the definition of the intersection number $I_2(f, Z)$ where $f: X \longrightarrow Y$ is a map and Z a submanifold of Y. State your assumptions clearly. Show that if $f_0, f_1: X \longrightarrow$ Y are homotopic, Z a submanifold of Y, and $I_2(f_0, Z)$ is defined, then $I_2(f_0, Z) =$ [8] $I_2(f_1, Z).$
- (c) Prove that every $n \times n$ real matrix A with nonnegative entries has a real nonnegative eigenvalue. [6]
- (3) (a) Construct a nowhere zero *n*-form on S^n . [5]
 - (b) Let ω be an exact 1-form on S^1 . Show that $\omega(x) = 0$ for some $x \in S^1$. Is the same conclusion true for exact 1-forms on \mathbb{R} and [0, 1]? [6][9]
 - (c) Show that $H^1(\mathbb{R}^2 0) \neq 0$.